Direct Proof
claim: if $P$ then $Q$
proof: Suppose $P$ … then $Q$
claim: if $m$ and $n$ are odd then $mn$ is odd
proof: Suppose that $m$ and $n$ are odd .
Thus: $m=2x+1$ and $n=2y+1$ for $x,y\in \mathbb{Z}$
Notice that: $mn=(2x+1)(2y+1) = 4xy+2x+2y+1$ then $mn$ is odd
claim: If $f(x)$ is differentiable at $a\in \mathbb{R}$ then it is continuous at $a$
proof: Suppose $f(x)$ is differentiable at $a$
So $\lim\limits_{x\rightarrow} \frac{f(x)-f(a)}{x-a}=f’(a)$ exists and is finite
$0=\lim\limits_{x\rightarrow a}f’(a)(x-a)=(\lim\limits_{x\rightarrow a} x-a)(\lim\limits_{x\rightarrow a} \frac{f(x)-f(a)}{x-a})=\lim\limits_{x\rightarrow a} (f(x)-f(a))$
So, $\lim\limits_{x\rightarrow a} f(x)=f(a)$ so $f(x)$ is continuous at $a$
claim: If $a$ is odd then $a^2+4a+7$ is even.
proof: Suppose that $a$ is odd. So we can write $a=2k+1$ for $k\in \mathbb{Z}$
Notice that: $a^2+4a+7=(2k+1)^2+4(2k+1)+7=4k^2+4k+1+8k+4+7=4k^2+12k+12=2(2k^2+6k+6)=2k’$, which is even.
Proof by contrapositive | $P\implies Q \equiv \text{~}Q \implies\text{~}P$
claim: If $x^2-8x+11$ is even then $x$ is odd
$P:x^2-8x+11$ is even
$\text{~}P: x^2-8x+11$ is odd
$Q: x$ is odd
$\text{~}Q: x$ is even
Proof: Suppose that $x$ is even
Thus $x=2k$ for $k\in \mathbb{Z}$
Notice: $x^2-8x+11=(2k)^2-8(2k)+11=4k^2-16k+10+1=2(2k^2-8k+5)+1=2k’+1$
which is odd.
claim: If $3\nmid xy$ then $3 \nmid x$ and $3 \nmid y$
$P:3\nmid xy $
$Q:3\nmid x\text{ and } 3\nmid y$
$\text{~}P:3\mid xy$
$\text{~}Q:3\mid \text{ or } 3\mid y$
proof: Suppose that: $3\mid x \text{ or }3\mid y$. Without loss of generality assume $3\mid x$. So, $x=3k$ for $k\in \mathbb{Z}$. Thus $xy=(3k)y=3k’$. So $3 \mid xy$
Proof by contradiction
claim: if $a,b\in \mathbb{Z}$ then $a^2-9b\ne 3$
proof: Suppose that $a,b\in \mathbb{Z}$ such that $a^2-9b=3$
So $a^2=9b+3=3(3b+1)$
and thus $3\mid a^2$
So $3\mid a$ and we can write $a=3k$ for $k\in \mathbb{Z}$
$\implies (3k)^2=3(3b+1)\implies 3k^2=3b+1$
Thus $1=3(k^2-b)$ and $3\mid 1$, a contradiction
Theorem: There are infinitely many primes
Proof: Suppose there are finitely many primes $p_1,…,p_n$
Consider: $\frac{1}{1-\frac{1}{p_1}}.\frac{1}{1-\frac{1}{p_2}}…\frac{1}{1-\frac{1}{p_n}}=(1+\frac{1}{p_1}+\frac{1}{p_1^2}+…)…(1+\frac{1}{p_n}+\frac{1}{p_n^2}+…)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+…=\sum\limits_{n=1}^{\infty} \frac{1}{n}$, so the harmonic series converges, a contradiction
Principles of Mathematical Induction
$1=1=1^2$
$1+3=4=2^2$
$1+3+5=9=3^2$
$1+3+5+7=16=4^2$
prop: For all $n\in \mathbb{N}$, we have $1+3+5+…+(2n-1)=n^2$
Proof: (PMI)
Base case: $(n=1)$ Observe that $1=1^2$
Induction hypothesis
Suppose for $k\ge 1$, we have $1+3+…+(2k-1)=k^2$
Consider $1+3+5+…+(2k-1)+(2k+1)=k^2+2k+1 = (k+1)^2$
claim: For all $n\in \mathbb{N}$, we have: $3\mid 5^{2n}-1$
proof: (PMI)
Base: $(n=1)$ notice that $5^2-1=24=3.8$ so $3\mid 5^{2.1}-1$
Induction hypothesis:
Suppose for some $k\ge 1$, we have $3\mid 5^{2k}-1 \iff 5^{2k}-1=3m$
Consider: $5^{2(k+1)}-1=5^{2k}.5^{2}-1=5^{2k}.5^{2}-5^2+5^2-1=5^2(5^{2k}-1)+5^2-1=5^2.3m+3.8=3(25m+8)$
$\implies 5^{2(k+1)}-1=3(25m+8)=3m’$
$\implies 3\mid 5^{2(k+1)}$
So $3\mid 5^{2n}-1$.
A relation on a set
Def: A relation on a set A is a subset $R\subseteq A\text{x} A$
write
-
$(x,y)\in R$ as $xRy$
-
$(x,y)\notin R$ as $x\not R y$
ex: $A$ = any set, $R$ is equality
$(x,y)\in R\iff x=y$
R = {$(a,a)\mid a\in A$}
A = {1,2,3}, R = {(1,1),(2,2),(3,3)}
ex: A= {1,2,3}, R is less than or equal
$1\le 1\implies (1,1)\in R,1\le 2\implies (1,2)\in R,1\le 3\implies (1,3)\in R,..$
R={(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)}
ex: $A=\mathbb{N}$, $R$ is divides
$(m,n)\in R\iff m\mid n,n=md,d\in \mathbb{N}$
$(1,n)\in R$ b/c $1\mid n$
$(2,10)\in R$ b/c $2\mid 10,10=2.5$
Equivalence Relations
Def: A relation $R \subset A\text{x}A$ is called an equivalence relation if
-
$(a,a)\in R$ for all $a\in A$
-
if $(a,b)\in R$ then $(b,a)\in R$
-
if $(a,b)\in R$ and $(b,c)\in R$ then $(a,c)\in R$
Ex:
- $R$ is equality
$(a,b)\in R \iff a=b$
- $R$ is nothing
$(a,b)\in R$ for all $a,b\in A$
- $R=A\text{x}A$
$A=${all differentiable functions: $R\rightarrow R$}
$fRG\iff f’=g’$
Def: Given an equiv relation on $R\subseteq A\text{x}A$. The equiv class of $a\in A$ is $[a]=${$b\in A\mid (a,b)\in R$}
Ex:
- A,=
$[a]=${$b\in A\mid a=b$}={$a$}
- A,nothing
$[a]=${$b\in A\mid (a,b)\in R=A\text{x}A$}=A
- A,diffirentiable function $fRG\iff f’=g’$
$[f]=${$g\in A\mid f’=g’$}={$g\in A\mid (f-g)’=0$}={$f+c\mid c\in \mathbb{R}$}